inorganic compounds

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Trineodymium(III) pentairon(III) dodecaoxide, Nd₃Fe₅O₁₂

Takashi Komori,^a* Terutoshi Sakakura,^a Yasuyuki Takenaka,^b Kiyoaki Tanaka^a and Takashi Okuda^a

^aGraduate School of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Japan, and ^bHokkaido University of Education HAKODATE, Yahata-cho, Hakodate-shi, Japan Correspondence e-mail: tkomori@katch.ne.jp

Received 3 September 2009; accepted 11 September 2009

Key indicators: single-crystal synchrotron study; T = 298 K; mean $\sigma(Fe-O) = 0.0001$ Å; R factor = 0.016; wR factor = 0.018; data-to-parameter ratio = 50.4.

The title compound, $Nd_3Fe_5O_{12}$ (NdIG), has an iron garnet structure. One of the Fe atoms is coordinated by six O atoms in a slightly distorted octahedral geometry and has $\overline{3}$ site symmetry. The other Fe atom is coordinated by four O atoms in a slightly distorted tetrahedral geometry and has $\overline{4}$ site symmetry. The FeO₆ octahedron and FeO₄ tetrahedron are linked together by corners. The Nd atom is coordinated by eight O atoms in a distorted dodecahedral geometry and has 222 site symmetry. The O atoms occupy general positions.

Related literature

The title compound is isotypic with the $Ia\overline{3}d$ form of $Y_3Fe_5O_{12}$ (YIG), see: Bonnet *et al.* (1975). For crystal growth from low-temperature liquid-phase epitaxy, see: Fratello *et al.* (1986). X-ray intensities were measured avoiding multiple diffraction, see: Takenaka *et al.* (2008). For details of the full-matrix least-squares program QNTAO, see: Tanaka *et al.* (2008). For the anisotropic extinction refinement, see: Becker & Coppens (1975).

Experimental

Crystal data

Nd₃Fe₅O₁₂ $M_r = 903.97$ Cubic, $Ia\overline{3}d$ a = 12.6128 (2) Å V = 2006.48 (6) Å³ Z = 8 Synchrotron radiation $\lambda = 0.67171 \text{ Å}$ $\mu = 18.30 \text{ mm}^{-1}$ T = 298 K 0.025 mm (radius)

Data collection

Rigaku AFC four-circle diffractometer Absorption correction: spherical [transmission coefficients for spheres tabulated in International Tables C (1992), Table 6.3.3.3, were interpolated with Lagrange's method (four point interpolation; Yamauchi *et al.*, 1965)] $T_{\min} = 0.502, T_{\max} = 0.527$ 6653 measured reflections
1159 independent reflections
1159 reflections with $F > 3\sigma(F)$ $R_{\text{int}} = 0.017$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.016 & 23 \ {\rm parameters} \\ wR(F^2) = 0.018 & \Delta\rho_{\rm max} = 1.61 \ {\rm e} \ {\rm Å}^{-3} \\ S = 1.42 & \Delta\rho_{\rm min} = -1.75 \ {\rm e} \ {\rm Å}^{-3} \end{array}$

Table 1 Selected geometric parameters (Å, °).

Nd1-O1	2.41820 (10)	Fe1-O1	2.03300 (10)
Nd1-O1 ⁱ	2.52960 (10)	Fe2—O1 ⁱⁱ	1.87550 (10)
O1-Fe1-O1 ⁱ	85.59 (1)	$O1^{ii}$ -Fe2- $O1^{iv}$	99.87 (1)
O1 ⁱⁱ -Fe2-O1 ⁱⁱⁱ	114.47 (1)		
Symmetry codes: (i	z, x, y ; (ii) $x + \frac{1}{2}$	$v, -z + \frac{1}{2}$; (iii) $-x + \frac{1}{2}$	$z - \frac{1}{2}$, $v + \frac{1}{2}$; (iv)

Symmetry codes: (i) z, x, y; (ii) $x + \frac{1}{2}, y, -z + \frac{1}{2}$; (iii) $-x + \frac{1}{4}, z - \frac{1}{4}, y + \frac{1}{4}$; (iv) $x + \frac{1}{2}, -y, z$.

Data collection: AFC-5, specially designed for PF-BL14A (Rigaku Corporation, 1984) and IUANGLE (Tanaka et al., 1994).; cell refinement: RSLC-3 (Sakurai & Kobayashi, 1979); data reduction: RDEDIT (Tanaka, 2008); program(s) used to solve structure: QNTAO (Tanaka et al., 2008); program(s) used to refine structure: QNTAO (Tanaka et al., 2008); molecular graphics: ATOMS for Windows (Dowty, 2000); software used to prepare material for publication: RDEDIT.

The authors thank Dr V. J. Fratello for supplying the crystals.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2118).

References

Becker, P. J. & Coppens, P. (1975). Acta Cryst. A31, 417-425.

Bonnet, M., Delapalme, A., Fuess, H. & Thomas, M. (1975). *Acta Cryst.* B31, 2233–2240.

Dowty, E. (2000). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.

Fratello, V. J., Brandle, C. D., Slusky, S. E. G., Valentino, A. J., Norelli, M. P. & Wolfe, R. (1986). Cryst. Growth, 75, 281–283.

International Tables for X-ray Crystallography, Vol. C (1992). Birmingham: Kynoch Press.

Rigaku Corporation (1984). AFC-5. Rigaku Corporation, Tokyo, Japan. Sakurai, T. & Kobayashi, K. (1979). Rep. Inst. Phys. Chem. Res. 55, 69–77.

Takenaka, Y., Sakakura, T., Tanaka, K. & Kishimoto, S. (2008). Acta Cryst. A64, C566.

Tanaka, K. (2008). RDEDIT. Unpublished.

Tanaka, K., Kumazawa, S., Tsubokawa, M., Maruno, S. & Shirotani, I. (1994).
Acta Cryst. A50, 246–252.

Tanaka, K., Makita, R., Funahashi, S., Komori, T. & Zaw Win (2008). Acta Cryst. A64, 437–449.

Yamauchi, J., Moriguchi, S. & Ichimatsu, S. (1965). Numerical calculation methods for computers. Tokyo: Baifūkan.

supplementary m	aterials	

Acta Cryst. (2009). E65, i72 [doi:10.1107/S1600536809036794]

Trineodymium(III) pentairon(III) dodecaoxide, Nd₃Fe₅O₁₂

T. Komori, T. Sakakura, Y. Takenaka, K. Tanaka and T. Okuda

Comment

The title compound, $Nd_3Fe_5O_{12}$ (NdIG), was difficult to be grown. It was grown by the low-temperature-liquid-phase epitaxy for the first time by Fratello *et al.* (1986). Though the crystal structure was assumed as iron-garnet-type structure by lattice constant and extinction rule, the complete structure was not determined. In this paper, we determine the O atom position and the complete structure by the full matrix least-squares program QNTAO. Since the R-factor is small and the residual density has no significant peaks where no atoms exists, the structure was finally determined to be iron-garnet structure. It is isotypic with the $Ia\overline{3}d$ form of $Y_3Fe_5O_{12}$ (YIG). (Bonnet *et al.*, 1975). The Nd atom is coordinated by eight oxygen atoms. It forms a distorted dodecahedron. There are two Fe site symmetries. One of the Fe atom is coordinated by six oxygen atoms with site symmetry $\overline{3}$. It forms a slightly distorted octahedron. The other Fe atom is coordinated by four oxygen atoms, site symmetry $\overline{4}$. It forms a slightly distorted tetrahedron. FeO₆ octahedron and FeO₄ tetrahedron are linked together by corners. The structure of NdIG is drawn in Fig.1. And displacement ellipsoids of NdO₈ is drawn in Fig.2.

Experimental

Single crystals of neodymium iron garnet were prepared by low temperature liquid phase epitaxy on $Sm_3(ScGa)_5O_{12}$ seeds with lattice parameters near the projected values for NdIG.

Refinement

The Becker–Coppens type 1 Gaussian anisotropic extinction parameters were employed (\times 10⁻⁴ seconds). z11 = 10.2 (5), z22 = 10 (2), z33 = 12 (2), z12 = 1(1), z13 = -0.5 (7), z23 = -1(1). X-ray intensities were measured avoiding multiple diffraction. (Takenaka *et al.*, 2008).

Figures

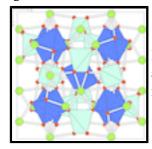


Fig. 1. The structure of $Nd_3Fe_5O_{12}$. Small red and large green spheres represent O and Nd atoms, respectively. Purple octahedron and blue tetrahedron represent FeO_6 and FeO_4 units, respectively.

supplementary materials

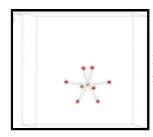


Fig. 2. View of NdO₈ with displacement ellipsoids at the 90% probability level. Green and red ellipsoids represent Nd and O atoms, in Fig.1.

Trineodymium(III) pentairon(III) dodecaoxide

Crystal data

 $Nd_3Fe_5O_{12}$ $D_x = 5.985 \text{ Mg m}^{-3}$

 $M_r = 903.97$ Synchrotron radiation, $\lambda = 0.67171 \text{ Å}$ Cubic, $Ia\overline{3}d$ Cell parameters from 24 reflections

Hall symbol: -I 4bd 2c 3 $\theta = 35.7$ -42.4° a = 12.6128 (2) Å $\mu = 18.30 \text{ mm}^{-1}$ V = 2006.48 (6) Å³ T = 298 K Z = 8 Sphere, black F(000) = 3248 0.03 mm (radius)

Data collection

Rigaku AFC four-circle diffractometer 1159 independent reflections

Si 111 1159 reflections with $F > 3\sigma(F)$

Detector resolution: 1.25×1.25 degrees pixels mm⁻¹ $R_{int} = 0.017$

 $\omega/2\theta$ scans $\theta_{\text{max}} = 53.9^{\circ}, \, \theta_{\text{min}} = 3.7^{\circ}$

Absorption correction: for a sphere

Transmission coefficients for spheres tabulated in

International Tables C (1992\bbr00), Table 6.3.3.3, $h = -8 \rightarrow 30$

were interpolated with Lagrange's method (four point

interpolation; Yamauchi et al., 1965).

 $T_{\text{min}} = 0.502$, $T_{\text{max}} = 0.527$ $k = -8 \rightarrow 30$ 6653 measured reflections $l = -8 \rightarrow 30$

Refinement

Refinement on *F*Primary atom site location: isomorphous structure

methods

Least-squares matrix: full Weighting scheme based on measured s.u.'s

Extinction correction: (B-C type 1 Gaussian aniso-

tropic; Becker & Coppens (1975) Extinction coefficient: 0.308 (5)

23 parameters

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(\mathring{\mathbb{A}}^2)$

	x	y	Z	$U_{\rm iso}*/U_{\rm eq}$
Nd1	0.125000	0.000000	0.250000	0.00557(1)
Fe1	0.000000	0.000000	0.000000	0.00501(1)
Fe2	0.375000	0.000000	0.250000	0.00564(1)
O1	-0.029295 (2)	0.053092 (2)	0.149342 (2)	0.00762 (5)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Nd1	0.00421 (1)	0.00525 (1)	0.00525 (1)	0	0	0.00121(1)
Fe1	0.00501(2)	0.00501(2)	0.00501(2)	-0.00024 (2)	-0.00024 (2)	-0.00024 (2)
Fe2	0.00442 (3)	0.00625 (2)	0.00625 (2)	0	0	0
O1	0.00791 (8)	0.00880(9)	0.00614(7)	-0.00027(7)	0.00102(6)	0.00041 (7)

Geometric parameters (Å, °)

Nd1—O1	2.41820 (10)	Fe1—O1 ⁱ	2.03300 (10)
Nd1—O1 ⁱ	2.52960 (10)	Fe1—O1 ^{viii}	2.03300 (10)
Nd1—O1 ⁱⁱ	2.41820 (10)	Fe1—O1 ^{ix}	2.03300 (10)
Nd1—O1 ⁱⁱⁱ	2.52960 (10)	Fe1—O1 ^x	2.03300 (10)
Nd1—O1 ^{iv}	2.41820 (10)	Fe1—O1 ^{xi}	2.03300 (10)
Nd1—O1 ^v	2.52960 (10)	Fe2—O1 ^{xii}	1.87550 (10)
Nd1—O1 ^{vi}	2.41820 (10)	Fe2—O1 ^{iv}	1.87550 (10)
Nd1—O1 ^{vii}	2.52960 (10)	Fe2—O1 ^{xiii}	1.87550 (10)
Fe1—O1	2.03300 (10)	Fe2—O1 ^{vi}	1.87550 (10)
01—Nd1—01 ⁱ	67.83 (1)	O1—Fe1—O1 ^{viii}	85.59 (1)
O1—Nd1—O1 ⁱⁱ	72.82 (1)	O1—Fe1—O1 ^{ix}	180.00
O1—Nd1—O1 ⁱⁱⁱ	124.94 (1)	O1—Fe1—O1 ^x	94.41 (1)
O1—Nd1—O1 ^{iv}	110.91 (1)	O1—Fe1—O1 ^{xi}	94.41 (1)
O1—Nd1—O1 ^v	72.97 (1)	O1 ^{xii} —Fe2—O1 ^{vi}	114.47 (1)
O1—Nd1—O1 ^{vi}	159.79 (1)	O1 ^{xii} —Fe2—O1 ^{iv}	114.47 (1)
01—Nd1—01 ^{vii}	95.60 (1)	O1 ^{xii} —Fe2—O1 ^{xiii}	99.87 (1)
O1—Fe1—O1 ⁱ	85.59 (1)		

Fig. 1

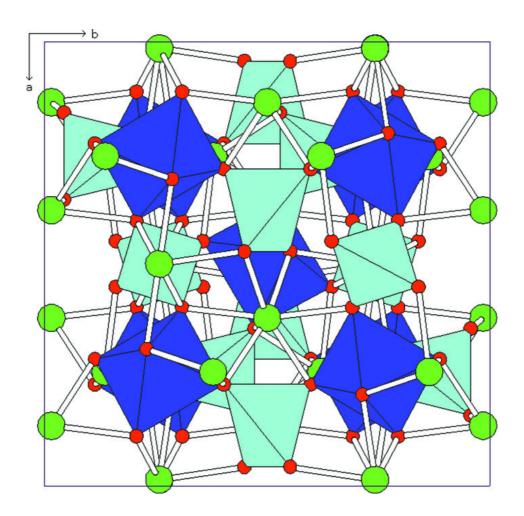
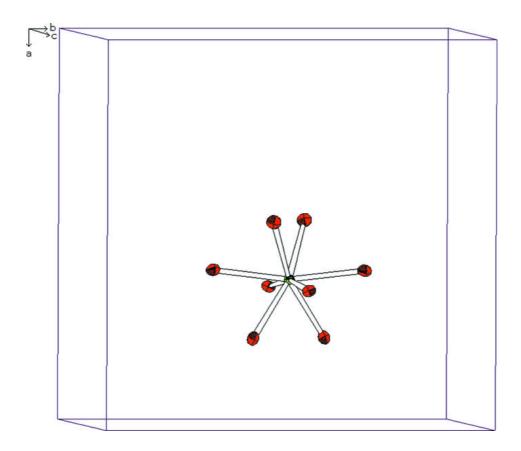



Fig. 2

